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Abstract

The Jaumann stress-strain approach has been used to evaluate a
~ nonlinear structural response to a shell like geometry. The method employs
"a finite element solution incorporating the Jaumann stress-strain
relationships based on large displacement and large rotation using a
corotational technique. The resulting equations include the continuity of
stresses and displacements in the thickness direction. Thus, it is possible to
evaluate the effects of direct and shear stresses within a laminated
structure.

Initial comparisons of the method of analysis has been made with two other
theories. The first is the total Lagrangian theory based on an in-house
program, and the second is an Eulerian based theory defined by ABAQUS.
Several problems have been attempted including a cylindrical shell panel
made from composite materials undergoing nonlinear collapse. Two new

algorithm have been developed; the first to consider a nonconservative force
system and the second to transform the resulting equations from a
curvilinear coordinate system into a Cartesian system. The last algorithm
defines a global set of equations which can be used for the mixture of various
element geometries.

Results show that the need for a correct through the thickness
evaluation of the stresses of the shell is required as the shell thickness
increases relative to the resulting geometry. In a predominantly membrane
resistant structure, the three types of theories, Eulerian, Jaumann and
Lagrangian show close comparison.
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1 Introduction

The focus of this research is to carry out an analysis of satellite antennas
made from various composite materials incorporating a program which can
be specifically directed toward this type of structure without resorting to
commercial programs. In this inflatable structure, a paraboloidal shape is
desired for optical and RF(Radio Frequency) reflectors [1][4][5] because of
their scientific use. Thus, the major concern is to obtain a membrane space
structure which approaches a paraboloid geometry under internal pressure.
Therefore, this research is an attempt at developing a robust but efficient
finite element program which can simulate the major characteristics of the
need for arriving at an approximate final geometry. The method employed is
one which incorporates the concept of large movement due to a nonconserva-
tive pressure loading (one that remains normal to the deforming structure).
This method is based upon the Jaumann stress-strain relationships using the
corotational[2][3] technique. The resulting equations include the continuity
of stresses and displacements in the thickness direction. Thus, it is possi-
ble to evaluate the effects of direct and shear stresses within a laminated
structure and trace any honlinear geometric characteristics.

In this first report, the Jaumann relations are developed within a total
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Lagrangian system using a corotational approach. An in-house computer
program(JAGS!) is modified to handle the appropriate geometries and results
are compare to an Eulerian based program, ABAQUS. Several problems have
been attempted including; a cylindrical' shell panel made from composite
materials undergoing nonlinear collapse; an isotropic membrane acted upon
by a nonconservative force system and a parabolic shell acted upon by a
pressure loading. These problems verify the accuracy of the theory and
program.

Results show that the need for a correct through the thickness evaluation
of the stresses of the shell is required as the shell thickness increases relative
to the resulting geometry. In predominantly membrane resistant structures
the comparison among the three types of theories, Eulerian, Jaumann and

Lagrangian(SLR?[6], LDLR3[7]) are very close.

2 Theory

In this section, a brief review of the corotation theory leading to the Jaumann

stress-strain relationship is carry out. This theory is presented to show a total

1Jaumann Analysis of General Shells
2Simplified Large Displacement and Moderately Large Rotation
3Large Displacement and Large Rotation




Lagrangian corotational approach. Much of this development can be found

in several papers written by Palazotto et. al.[7] - [10].

2.1 A Total Lagrangian Corotational Finite Element

Scheme used in the Analysis of An Inflatable Shell

Figure 1: Deformation of an infinitesimal volumn element.




The theory makes use of the polar decomposition method to facilitate
the use of a local (and linear) displacement field at an infinitesimal region of
interest in the nonlinear deforming body. The Jaumann stress[11] J;,, and

strain B,,, are given by

1 . .
Jmn = m (dzm £ - ip + dz, £, - im) (1)
1({0u ., Ou |,
an - —2- (awm * l'n + amn * lm) (2)

where the f,,, are the force resultants on the faces of the deformed paral-
lelepiped ( Figure 1). For example, f; acts on the deformed dz, — dz3 plane.
The local displacement vector u of equation(2) is measured with respect to
the displaced location of a material point, hence at any given point on the
deformed reference surface, u = 0, though its derivatives (which will give rise
to the strains) are non-zero. The Jaumann stresses and strains are defined
with respect to the orthogonal directions; denoted by unit vectors i, associ-
ated with the stretched and rigidly rotated volume element (Figure 1(a)). On
the other hand, the second Piola-Kirchhoff stresses Smn and Green’s strain

L. are defined by

1 3 .
dz, dz, dz3 42(my fomy = 2 (Sm(”) An l(")) 3)

n=1
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Lonn = % (/\mi(a) A i(g)) @

where A, is the magnitude of so-called “lattice vector”, and the pmenth@%
suspend the tensor summing convention. In the figure, it is seen that the
Second - Piola/Green measures are associated with the directions along the
deformed (and, in general, not orthogonal) edges of the element, as shown
in Figure 1(b). The directions of the lattice vector c;)rrespond to the direc-
tions of the unit vectors i;. So, in general, the component of the Second
Piola stresses are along neither those of the undeformed coordinate system,
as are the Eulerian measures depicted in Figure 1(c), nor those of its rigidly
translated and rotated counterpart in the deformed body (as are the Jau-
mann measures). This is a consequence of the Green strains being energy
related measures rather than strictly geometric measures, like Jaumann or
engineering strains. To use the J aumann measures, which are local, the effect
of rigid body translation and rotation must be removed so that the effect of
stretching is seen.

In a layered composite consisting of N layers, the local displacement
vector with respect to the local £n¢ coordinate system of Fig.(2) as presented

in Pai and Palazotto[3] is defined as

u= ugi)il + ugi)ig + u;(f)i;; (5)

10




Figure 2: Infinitesimal element undergoing deformation(after Pai and Pala-

zotto, 1995)
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w' = w(@y)+2[0:(0y) - 6 (2,9)] + 752+ of (z,9) 2 + B9 (, ) 2°
u = u(5,9)+2 (01 (2,9) - 6 (2,9)] + 72+ 0 (2,9) 2+ B9 (z,5) 2°

u = u(z,9)+of (z,9) 2 + P (z, ) 22

Here, u? (4 =1,2,3) are the components of displacement (with respect to
the local coordinate system £n¢) of a point which is located on the reference
surface at (z,y) before deformation. The rigid body rotations and shear ro-
tations are given by 6 and ~, respectively. The angle between the transverse
coordinate z and the normal to the reference surface in the undeformed con-
figuration as measured in the zz plane is given by 69. The corresponding
angle in the yz plane is given by 69. The shear rotatibn angle in the xz plane
at the reference surface is denoted by 75, and represents the rotation of the
normal to the reference surface due to transverse shear deformation. The cor-
responding angle in the yz plane is %4 The terms a,(:) and ,Bg), are referred
to as shear warping and thickness stretch functions. These functions are
used to describe the kinematic behavior, beyond simple rotation of the rigid
normal, of the material away from the reference surface, and allow coupling

of the displécement ugi) and ugi) via the shear angles at the reference surface.
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That is, 5 can affect displacement ugi) through the warping functions and,
likewise, v, can affect ugi). By defining the shear warping functions, G; and

G2, and the thickness stretch function, G; as

Gi1=7s z+a§i)22+,3§i)z3, Gyo=7, z+agi)z2+ﬁgi)z3 and G; = c>z§")z+,3§i)z2

)

(6)
the kinematics of the eqn.(6) may be written as
’U.(li) = U(1) (x,y) +z [02 (:E, y) - 03 (:ZI, y)] +Gh
ug) = Ug (x,y) + 2z [91 (1‘, y) - 0(1) (:L‘, y)] + G
W = (2,0 +Gs | )

The stretch funqtion G3 is usually small, especially for thin shells and one
may neglect G3 and its derivatives in most strain-displacement expressions.
This is based upon the claim that the effect of transverse shear strain on
the in-plane strain is negligible. Under this assumption, the Jaumann strain

displacement relations become

i Ou

Bgl) = 5‘5_.11 =(1+el)cos'yﬁl——1+z(k1—k?)+G1,z-k5G2 (8)
i Ou ., '

Bz(>2) = bz ig = (1+ez)cosyg — 1+ 2 (kz - kg) + Gay — k4G (9)
i Ou ,

Bf = & -ig=1 (10)
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i ou ., Ou .

2Bf) = k. t3, k= G,z — koG — koG (11)
f Ou R ou R

2353) = 'é; -13 + a—z' ‘= Gl,z — k1G, — k61G, (12)
] Ou . Ou R

238 = a—x'l2+a—y'11

= (1 +e1)sinyg + (1 + €;)sinygy + 2 (ks - kg)
+G2,z - kezGl - k‘gGg (13)
where kﬁ = kﬁl + k52 and kg = k(ﬁ)l + kg2
For comparison, the total Lagrangian LDLR making use of the Green

stain tensor, incorporates the kinetics, written in global Lagrangian cylindri-

cal coordinates, as

ur = u+ zsin(y;)cos (1) - (14)

Uz

v (1 - %) + zsin (1),)
us = w+z{cos(¢;)sin (4h,) - 1}

where 9, is the angle made by the deformed normal to the original normal
in the z-z plane, and ¥, is the angle made by the deformed normal to the
original normal in the y-z plane. The bending angles ¢, and ¢, are similar
to Euler angles for rigid body motion. u, v and w are the displacements of
i-th layer on the mid plane and R is the radius of the shell. This is a first or-
der shear theory with a linear through the thickness shear, and the kinematic

14




assumption violates the zero shear condition on the top and bottom surfaces.
Also, it can be observed that by using a small angle approximation for both
1, and 1),, the basic kinematics used in the SLR theory is obtained. The
kinematics used in the SLR theory are based on the third order shear defor-
mation theory which assumes that the through thickness shear is a parabolic
curve. This theory also makes use of the Green strain tensor but assumes
relative small rotations. A detailed description regarding the derivation of
‘the applicable kinematics that can be used for large kinematics is presented
in Gummadi and Palazotto[13].

The relationship between the Jaumann stresses, J,,,, and the Jaumann
(or Biot-Cauchy Ja.uxhann) strains, B, for the ith lamina of transversely

isotropic material may then be written as (for the transformed relationships)

4 3\ = 9 4 3\
i =(i) =) i) —=( i
JE 90 a8 a2 o0 o BY
i =) =G =G =) i
IS 2 QO Qo Qo 0 0 Bf)
i =) =@ =G =6G) i
| J§ 3 @ Qg Q3 0 0 B§)
3 > = < > . (15)
i =) =) i) =) i
J$ o Q% QY 3o o 2B{) |
J$) 0o 0 o o Qn QP|| 288
(3] [0 o 0 o QR QR |28
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The first variation of potential energy on an element basis is represented as
o = 35 [ 6T @) B« ] @5 [m0))
= é///v 6 [B(i)]T [B(‘)] dV (N = number of layers) | (16)

where V' is the undeformed volume of the shell element structure and (4)
refers to the value of the function in the ith layer of the laminate. And the

Q(i)] is a transformed stiffness matrix of principal stiffness matrix [Q(")] for
the ith laminar with respect to the £ axis, while [B(i)] is the Jaumann strain
in the ith laminar with respect to the £ axis. Figure (3) shows a four noded
44 degree of freedom (DOF) finite element. The 11 degree of freedom at each
COTNET 8Ie U; U,y ; Uy ; U; Uyz; Vyys Wi Wiz s Wyy; Y4 and 7. Hermitian shape
functions are used for all DOF except the tra;lsverse shear DOF v, and ~;,
which use bilinear shape functions. In order to solve the nonlinear finite

element equations, the Newton-Raphson method is used

Ne , N. ‘ _ '
3 5] () = 3 () - (K9] (o) ey 07
where {Rm} is the elemental nodal loading vector, [Kb']] is so called tangent

stiffness matrix, {q°} is the displacement vector at the last converged incre-

ment. {qm} represents the current nodal displacements, and N, is the total

number of elements making up the model. The product [KUI] {qm } (e} =)
q1}={q

16




is a vector described as follows,

KN} ryeay = [ [ P17 [ (2] () asay. 19

Ul 44x24 34,03 12x12
The formulation of the matrices in the above equation is described in detail
in the reference of Pai and Palazotto[11] also in Greer and Palazotto[12].
Detailed explanation for the terms in equations (18) are shown in Appendix
A. These terms relate to the variation of the functions of the displacement

gradient. In addition [¥°]” is a known matrix at {d°}.
24x12

2.2 Global Coordinates Representation of Elements Us-
ing Transformation Matrix

In order to incorporate an element developed in a local curvilinear coordi-
nate system with other elements in their own local coordinate system, one
must carry out a traqsformation to a global coordinate. It is appropriate
to niake use of a Cartesian system for this purpose. In order for this to be
establish, one must evaluate a transformation based upon the appropriate
orthonormal system and its directioﬁ with respect to the Cartesian axes. In
this section, the authors develope the relationships between the Jaumann

coordinate system, employing a local curvilinear coordinate system and the

17




global Cartesian coordinate system. (As yet, these expressions have not been
implemented within the program)
It is possible to express the equilibrium state in the original local coordi-

nate system using the equation

[Ka] {ua} = {Ra} (19)

where subscript o represents local curvilinear coordinate systems.

If we were to express the same state of equilibrium in a Cartesian system,

one would find

(K] {us} = {R.} (20)

where subscript z represents global Cartesian coordinate systems.
The transformation matrix [T] between the local curvilinear coordinate
system and global Cartesian coordinate system for an element is next intro-

duced yielding

{va}=T] {u.} . (21)

44x1

The [T] matrix is a matrix that has a rank of 44x44 if one considers a shell
element as in Figure (3). Thus each degree of freedom in the Cartesian system
is transformed into the appropriate degree of freedom in the curvilinear

system. The [T] matrix is developed as following; The vector 7 can be

18




U Ux U,y
V Vix Vy
W W Wy
Y4 Y5

Figure 3: 44 DOF Shell Element

expressed using direction cosines. In Figure (4), the vector A is drawn from an
arbitrary point P in space and will be referred to a set of unprimed Cartesian
coordinate axes with the origin at O, and to a set of primed coordinated axes
with the origin at O’. Both sets of axes may be translated‘without rotation
to the common origin at P. It is more convenient to summarize these sets of

direction cosines in tabular form as shown in Table 1.

19




Figure 4: Representation of a vector in two sets of coordinate axes with a

different orientation

Y 1l | mg|ny

2 l3 m3 | ng

Table 1: Direction Cosines between two coordinatg axes.

Then, the transformation matrix

[A]= 12 ma Ny (22)

Is mg ny

20




yielding

Now, the nodal degree of freedoms of one of the four noded element is

hiy

lils

ol

lal,

I3l

l3l5

lsm,

mily

myly

maly

maly

m311

maly

>=[A]J v

(
u

w

\

mym;

mimg

mam,

mama

m3my

mamy

3\

/

nlll

nyly

naly

naly

nsl;

naly

nym,

nims

Nagm,

Nangy

ngm;

nz3my

21
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Because of the fact;

Ou

az’

ou’

'

Oudz Oudy Oudz

-6-;537 6—y-a—z’- + —6—2-5; =lLu,+m Uyy +N1U,, (25)
L my 0

owor owby o or (26)

Oz 0 Oy 0 0z Oz

L(hu+ muv + nw),e +my (lou + myo + W),y

hhuz +milu,, +milv,, +tmimyv,y +nihw,. +nimyw,,

Ovdr Ovdy Ovi:z
_6_55; + _6;-6? -+ -5;5-1:—, =l v,, +my Uy +m10,, (27)

ete.

The transformation matrix can be expressed for the 44 DOF element as

follows

= [0] 0] [o]

0] Z [0] [0 | '
LR 29
“ o e

[0] [o] [o] =

where [0] is 11 X 11 null matrix in which all the component of matrix are

zero. Equation (19) can now be expressed as

[Ka] [T]{uz} = {Ra} . (29)

22




Multiply both sides of the equation (29) by [T]™" = [T]” yields

[T [fa] [T] {u.} =[T]TR{R¢,} : (30)

where

K, =[T]" (Ko [T] and R, = [T]" {Ra}.

The Jaumann strain {B} is a function of u, which is {B} = {B (u,)}. It

can be expressed in global Cartesian coordinate system using relationships
Bi; = lylji B
( lij = direction cosines between the local and global coordinate systems).

And Jaumann stress J’ ,which is function of Jaumann strain B’ can also

be expressed as

Jilj = likljl-]kl-

2.3 Nonconservative Loading Case in JAGS

It is required that the loading system considered in an antenna analysis be
directed normal to the deformed surface. Thus, for this to occur one must
consider nonconservative loading equations for evaluation. The loading must

be applied in increments normal to the surface.
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‘First express the stiffness matrix for the ith load increment as;

[Ka) = [Ki] + [AK], | (31)
note [K;] can be a nonlinear stiffness matrix. and [AK] = dK, = [%%dui]

For example K); = 3 (u} + u) then dKi; = 3 (2u;du; + 2usdu,). The equi-
1

librium equation
[K]{u} = {R} (32)

can be replaced by

(K] +[AK],) ({u} + {Aua}) = {R} + {AR,.} (33)

resulting in

[K]{u} + [K[{Aun} + [AK,) {u} + [AK. ] {Aun} = {R} + {AR,} (34)

The term [AK,] {Au,}is H.O.T., so we can ignore it. Equation (34) reduces

to
(K] {u} + [K]{Aun} + [AK,) {u} = {AR.} + {R}. (35)

Since [K] {u} = { R}, one can subtract these terms out of the solution in order
to find a resulting new incremental equation of state. The N ewton-Ralphson

24




Technique can be used to solve this nonlinear set of equations giving

[Kr] 6 {Au} = {AR,} - [K]{Dua} + [AK,) {u) (36)

where K1 = 3 gun ([AK,) {u} + [K]{Au,}) 6§ {Au,} (referred to as the tan-
gent stiffness matrix). The terms ('5‘{2@17,,7 [AK,] {u}) are evaluated by con-
sidering

¥ = [AK]{u} + [K]{Dun} — {AR:} =0, (37)

which is the incremental equilibrium relation.

There are i-equations with -DOF, then the expression using the index

notation is
¥ = AKjju; and dip; = Ky (38)
where
Kij = (DKinun) . (39)
Therefore
Kr =[(AKinuy,) ,; +K] 6 {Au,} (40)

For example, let’s consider the simple two dimensional case,

Kunui+ Kipuy = Ryjthus ¢y = Kjjup 4+ Kjpup — Ry =0 (41)

Kous+ Kpuy = Rpjthus¢, = Knui+ Knpup— Ry =0 (42)

25




Then,

oY,  0(Kiw) + 0(Kiauz) 0 (Kinun) 0 _ 0(Kinun) (43)
Ouy Ouy Ou,y Ou; ' Ouy Ous

61/}2 _ 6(K21 ul) + a(Kzz ’ltz) — 6(K2n un). 6¢2 — 6(K2n Un)
ou, Oy Ouy Ou; ' Ouy Ouy

(44)

If we use the modified Newton-Raphson technique, then K §Au,, b =
ARp, — KAun, + AKy u; can be used to evaluate §Au,,,. The value
of Au,,,, (normal increment of displacement for the i + 1 increment) =
Dug+6Auy,, . The satisfaction of the incremental state of equilibrium is

carried out within an established tolerance.

3 Application

Several attempts have been made to compare the method of the analysis of
the total Lagrangian theory based on JAGS, and the Eulerian based theory
defined by ABAQUS. Three cases have been performed. The first case was
cylindrical shell acting under a concentrated transverse load as in Figure 5.
This case depicts a shell panel undergoing movement which includes an insta-
bility or collapse point. Thus, geometric nonlinear displacement and rotation
can occur. This usually is displayed in a problem of this form by showing a
load vs. displacement curve for the degree of freedom at the applied force.

26




There are two regions for this type of curve. The rising or stable region
and the descending or unstable.region. Each point in the plot represents an

equilibrium state.

Figure 5: Simply supported point loaded cylinderical shell

The material properties are described as in Table 2. The shell properties

were modeled using a Hercules AS4-3501-6 graphite epoxy composite with

27




E, E, Ey G Gas V12

18.844 (10°) | 1.468 (10°) | 0.91 (10%) | 0.91 (10%) | 0.45(10°) | 0.26

Table 2: Material Properties of a Hercules AS4-3501-6 graphite epoxy com-

posite(unit psi)

the following conditions; conditionl: dimensions of 8 =1 radian, 24 plies
[06/90), and 0.12 in. thickness; condition2: 8 =1 radian, 12 plies [03/90;],
and 0.6 in. thickness; ; condition 3: 6 =0.5 radian 48 plies [0g /90¢],, and
0.24 in. thickness. A (176 nodes, 7x7 Elements) quarter symmetry model

was used. Results are shown in Figure 6, 7 and 8.
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Load (P/4) (Ibs)

1000 T T T v T

sook -+ ABAQUS |
i -=-- JAGS
7 - ~ LD-Theory

600 t —— SLR-Theoty

0.5 1 1.5 2 25
Displacement (inch)

Figure 6: Cylindrical Shell (R=12in. = 1 Radian, 24 Plies)
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Load (P/4) (bs)

250}
— JAGS

oool [~ - SLR-Theory
- ~ LD-Theory

ol | * ABAQus

0 0.1 0.2

03 04 0.5 0.6 0.7 0.8
Displacement (inch)

Figure 7: Cylindrical Shell (R=12in. 6 = 0.5 Radian, 12 Plies)
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7000} -=-- SLR-Theory
- - LD-Theory
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3
e
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A

Figure 8: Cylindrical Shell (R=12in. § = 0.5 Radian, 48 Plies)
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From Figure 6, in the case of a moderate thickness shell, J AGS, ABAQUS.
and LDLR give similar results up to and beyond collapse. The SLR theory
starts to depict a more flexible structure in the unstable region. As we
described in theory part both LDLR and SLR are Lagrangian based and
employing 2nd Piola-Kirchhoff stresses and Green strain. The difference in
SLR theory assumes small angle approximations. Because the thickness isn’t
large enough to create through the thickness shear effects, the resulting value
of JAGS, ABAQUS, SLR and LDLR are quite close. From Figure 7, in case
of the very thin shallow shell, all of the results are reasonably close. Finally,
{rom Figure 8, for the shallow and thick shell case, one can recognize a sig-
nificant difference between JAGS and the other programs and their theories.
This difference is one of the major characteristics of the JAGS program. It
can represent through the thickness shear stresses with the approximate con-
tinuities better than any of the other theories. SLR doesn’t include a through
the thickness shear stress compatibility. It assumes parabolic shear strain (
it assumes third order shear deformation). LDLR and ABAQUS assumes st
order shear deformation and neither of these theories consider direct through
the thickness shear except the JAGS theories (based on corotational theories,

assumes higher order shear deformation).
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thickness E v | radius

0.0127 mm | 5.516 Gpa | 0.3 | 1.5 m

Table 3: Geometrical Properties of the Shell Structure (Unit psi)

A second model studied was a circular disk (shown in Figure 9) with sim-
ply supported boundaries conditions under transverse pressure. This prob-
lem has been solved using ABAQUS and compared to the results of Greschik
et al.[4] [5]. It still has to be run using the JAGS program. The material

properties are listed in Table 3.

Finally, the third model considered is a parabolic shell shown as a dotted
line in Figure 9. (This problem still has to be run using JAGS and was oniy
runs using ABAQUS. The results were compared with Greschik et al. [4]
[5]). Figure 10 shows 930 S8R type elements for the shell model. The same
'material properties have been used as in the membrane disk except it follows
parabolic curves ( it depends on f/D; where f represents the parabolic focal
length and D is diameter of parabolic disk). The magnitude of zy, charac-
terize the shell’s center vertical. distance. The vertical distance z4, is 0 for

flat disk and 7.376 inches for parabolic membrane shell when f /D ratio is
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D

A
\ 4

Figure 9: Simply supported Disk and Parabolic shell under transverse pres-

sure

2
T Zetr
D 2 "'th-,-. The

2
radial and circumferential stress components for node 93 (at the boundary

1. The equation of parabolic disk can expressed as z =

near edge) under an increasing internal pressure is shown in Figure 11 for
the circular membrane, and the displacement at the center according to the
increasing pressure is showing in Figurel2. One should note the nonlinear
characteristics. ABAQUS does have the capability of incrementally increas-
ing the pressure and maintaining its direction normal to the deforming sur-
face. Thus the nonconservative capability was implemented in running the
problems. The; parabolic shell is a good initial depiction of the antenna sur-

face, and thus it becomes important to characterize the observed results for
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low loading pressures. Figures 13, 14 depict the stress components at node

93 for the parabolic shell geometry and the center displacement in which the

" supports were assumed to be pinned (radial, tangential and z direction is

constrained as fixed). These two figures show that the support condition
creates the type of stress field recognized for its linear membrane charac-
ter. The tangential stress is linearly increasing and is continuously showing
a tension. The center deflection ‘is also purely linear relative to the load as
shown in Figure14. In the next condition considered, the radial constraint
is removed. The deep shell with a f/D = 1 indicates that a compressive
stress component occurs in the tangential or hoop direction and Figures
15 - 18 are verification of this stress. At node 185 negative hoop stresses
increase when the loading increases. The location of nodes 93 and 185 are
described in the Figure 10. Figures 19 - 22 represent the fact that radial and
hoop stresses change according to coordinate angie, (where the coordinate
angle is measured counter clockwise with respect to the Z-axis; z-axis is 0
and y-axis is 90 degree). Negative hoop stresses exist. It can also be noticed
that close to the supports the compressive hoop stress region decreases with -
respect to a load increase as shown in Figures 21 and 22. In fact, at a load

of 5.9531 x 10~* psi, the shell shows a very small value of compressive hoop
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stress. Figure 23 and 24 represent the hoop stress value along a coordinate

angle of close to zero degrees. One can observe the region of negative val-
ues of this stress component and their magnitude at load 1.2711 x 10~ and
3.1777 x 10~ psi.It becomes apparent that the boundary restraint is very

important in relationship to the membrane stress component.
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LITTT

coordinate
angle I
measurements

)

Figure 10: Node numbers and Element numbers of Flat disk and Parabolic
membrane shell geometry.  (regular numbers represent node numbers and
underlined numbers represent element numbers) Representation of Radial

stress Srr and Tangential stress Stt.
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Figure 11: Radial Stress(Srr) and Tangential Stress(Stt) vs. Load Curve

( Initially flat disk with pinned support case).
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Figure 12: Load-Displacement Curve @Center (Initially flat disk with

pinned support case).
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Figure 13: Radial Stress(Srr) and Tangential Stress(Stt) vs. Load Curve
( Initially Parabolic membrane shell geometry (f/D = 1) with pinned sup-

port case)
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Figure 14: Load-Displacement Curve @Center  (Initially Parabolic mem-

brane shell geometry (f/D = 1) with pinned support case).
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Figure 15: Radial Stress(Srr) and Tangential Stress(Stt) vs. Load Curve @

node 93

( Initially Parabolic membrane shell geometry (f /D = 1) with

no radial constraint-pinned support case).
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Stt vs Load @node=93
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Figure 16: Detailed figure of Tangential Stress(Stt) vs. Load Curve @ node

93

( Initially Parabolic membrane shell geometry (f/D = 1) with no radial

constraint-pinned support case).
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Srr, Stt vs. Load Curve@node=185
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Figure 17: Radial Stress(Srr) and Tangential Stress(Stt) vs. Load Curve @

nodel85
( Initially Parabolic membrane shell geometry (f/D = 1) with no radial

constraint-pinned support case).
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Stt vs. Load @node=185
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Figure 18: Detailed figure of Tangential Stress(Stt) vs. Load Curve
( Initially Parabolic membrane shell geometry (f/D = 1) with no radial

constraint-pinned support case)
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Negative Stress Location
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100
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Figure 19: Radial Stress(Srr) and Tangential Stress(Stt) @ radial dis-
tance=47.581 inch and load= 1.2711 x 10~* pi
( Initially Parabolic membrane shell geometry (f /D = 1) with no radial

constraint-pinned support case).
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Negative Stress Location

Srr, Stt vs. Coordinated Angle @r=49.484 inch
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Figure 20:

Radial Stress(Srr) and Tangential Stress(Stt) @ radial
distance=49.484 inch and load= 1.2711 x 10~ psi

( Initially Parabolic membrane shell geometry (f/D = 1) with no radial

constraint-pinned support case).




Negative Stress Location

Srr, Stt vs. Coordinate Angle @r=49.484 Inch
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+ > - T : y - - N )
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Figure 21: Radial Stress(Srr) and Tangential Stress(Stt) @ radial dis-
tance=49.484 inch and load= 3.1777 x 10~* psi
( Initially Parabolic membrane shell geometry (f/D = 1) with no radial

constraint-pinned support case).
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Negative Stress Location

Srr, Stt vs. Coordinate Angle @ r=49.484 inch
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gls]
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Figure 22: Radial Stress(Srr) and Tangential Stress(Stt) vs. Loads Curve @
radial distance=49.484 inch and load= 5.9531 x 10~* psi
( Initially Parabolic membrane shell geometry (f/D = 1) with no radial

constraint-pinned support case).
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Figure 23: Tangential Stress vs. Radial Distance @ load = 1.2711 x 10~ psi.
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Stt vs. radial distance @Load=3.1777x10* Ibs
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Figure 24: Tangential Stress vs. Radial Distance @ load = 3.1777 10~*psi.
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4 Further Research

This effort is directed toward the development of a program that is specifically
designed to carry out the nonlinear analysis of antenna structures. JAGS is
the in-house program worked upon for this purpose. So far we have char-
acterized an individual panel, a disk and a parabolic shell structure under
various loadings using ABAQUS. The JAGS program has been compared to
ABAQUS for the panel. The equations have been developed for nonconserva-
tive loading to be implemented in JAGS. Also, the transformation relations
needed for a generalized global set of elements was developed and needs to be
implemented in JAGS. Once the new relations for a nonconservative loading
and a generalized transformation are implemented in JAGS, the membrane
and parabolic shell will be run. The authors will also continue to characterize
the antenna structure using ABAQUS. We will next combine two parabolic
shells; one concave up and the other concave down joined at their connecting
points under internal pressure. This will be followed by including discrete tie
rods at specific locations. The final model, that is the global configuration,
will be one which includes the parabolic shell configurations joined to a torus
through the appropriate tie rod configurations. The torus will be supported

a three concentrated points separated by 120 degree. It is apparent that
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the most important part of the last scenario is the instability of the torus.
The JAGS program results will be compared to ABAQUS throughout the
research. As the global model becomes more and more cpmplicated, it has

become obvious that the computer intensive feature will be a challenge.
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5 Appendix -The Terms in Equation (18)

The shape function matrix in natural coordinates is given by

D
24x 44

where

H;

H,
6x3
0
6x3
0
6x6

0
Ix9

0
L 3x10

Hi

H,f,r
Hllc,s
7‘{Ilc,rr

k
711;3

k
Hl,ss

0 H, 0 H;
6x8 6x3 6x8 6x3
H, 0 H,
6x3 6x8 6x3 6x8
H 0 H, o0
6x3 6x8 6x3 6x8
L, 0 L, 0
3x1 3x10 3x1 3x10
L, 0 L o0
3x1 3x10 3x1 3x10
k k
H; Hj
k k
7i2m 7i&r
k k
7{2@ 7{3@
b
k
7“(2,1'1- 0
k k
7i2ms 7i3ms
k
0 7i3ﬁs

The shape functions are given by

(1/8) (1 + r&7) (1 + si5) (2 + 7T + 58 — 12 — 52

0 H,
6x8 6x3
H;
6x3 6x8
H; 0
6x3 6x8
L; 0
3x1 3x10
Ly Ly
3x1 3x1

and Iq,==

(a/8) i (1 + mir)? (rer — 1) (1 + 8ys)

(b/8) Tk (1 4+ 77) (sk5 — 1) (1 + sis)?
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L = (1/4) (1 +rer) (1 + sis) (A3d)

where 2a and 2b are dimensions along x and y of the rectangular (in curvi-
linear coordinates) element, and the values of 7 and s, are determined by

the local coordinates(r,s) of the kth node.

A vector{y} displacement quahtities at the reference surface can be ex-

pressed as;

{¥} = {(1+e))cosyg — 1, (1+e3)cosyey, (1+ e1)sinyg; + (1 + e2) sin gy,

kl - k‘lj’ k2 - k(2)7 kﬁ - kg’ Va,z» Va0 V5,29 V4o 75}T (A4)

{0} are all known values at g in equation(18).

A expression 12x12 symmetric matrix [®] is
N Zi4+1 1T —(i L
=Y [ [s9]" & ’] [59] dz (A5)
. =172

where Z)_(i)] is the material transformed stiffness matrix for the ith lamina
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from its principal matrix [Q(i)] and the matrix [S(")] is

1 0 0 2 0 0 g% o 6@ o

0 1 0 0 2z 0 0 ¢ o 49

159 = 95 950 9% 95 954 9 o8 o off off

0 0 1 0 0 2z ¢ ¢ ¢ 40

—ksg&)

k49(‘)

a8

9%

953

954

—ksg(z)

k4g(’)

a8

9

969

964

(A6a)

The values of the entries g (warplng and thickness stretching function) are

& (@) _

gs1 = k4g41 + k5942, gs2 = k5g + k4g(z)

0 = kagl) + ksgld), 08 = ksg® ) + kygl)

(A6aa)

(A6ab)

g5 = af) +2{)z, j=0,.,9; ) =af) +2{)z, j=1,..4(Abac)

@H _

98 = g8, — (kagaa + k62914) 98 = 9%, — (kagas + Keag15)(Abad)

@ _ (@ _

gs4 = 914 z (k61924 + k1914) 964 = 915 z (k61925 + klgls) (A6ae)

An element of the [¥] matriz

To illustrate the content of the [¥] matrix, we first consider the displace-
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ment gradient vector, {U}

{U} = {8t w0050,y Ve 1 Viay § Vg ;
24x1
w7 w;:t v w;y ’ w,a:z ;wmy H w)yy 7’747 74)2 ’ 741y )

75;7512 s Vsoy }T . (A7)

and the variation of the vector

§{¥} = [¥)6 {U} | (A8)
where
Ty =[] = g—f}— (ASa)

W (4, j) are functions of the global displacements u, v, w and the initial curva-

ture. The terms are generated in mathematica. It can be shown for example

that ¥ (6,4) = :\I’G .

1T

W(6,4) = Oyg/0Us

= (ks — kQ) /Ot

= 0 (ko1 + koo — kY, — k%) /0u,z (A9)
where kg1and kg are the scalar quantities representing —%if -1 and —% -i3
respectively (see Figure 2), and k2, for example is the curvature term that
yields the j;; component of the %}2( again see Figure 2).
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The results is
W (6,4) = 0(—Tn,T31 — Too o T2 — T3 . Ta3) /Otyze (A10)

where the T;; are functions of fiber stretching and the corotational axes at
the deformed configuration of a point. This yields the expression for ¥ (6, 4)

in terms of a numerator and denominator function;

T(6,4)y = c(-(ab)+8*+d?)

x\/a (a® — 20% + ab? + 3022 — ba? — 2be? ~ 2/ad?V/ab — &)

X (— (c3cs) + cac5) (A10a)

¥(6,4), = vay(a®—ab+a2)? (b+vab- &)

x\/b (a2 — 2t + 1 — ad? + 3b? — ad?Vab— &) (A10b)

x\/cgcﬁ + c§cf — 2c1¢a¢405 + cicE + che? — 2cicacacs + AcE + Ac?

where

a = 1l+u, —vkd+ wk?

2 = v,, —ukl+wkd
s = w,,—uk)+ vkd
cs = Uy, —vk)+ wkd,
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¢s = l+uv, —ukd+ wk) (A10c)

6 = w, —uk22+vkg
o = Jd+d+4
b= Jd+rd+a
€ = ¢4+ €265 + ¢3¢
d = 1/Vab

All other terms are expressed in detail in Appendix of Greer[14] or refer

to Greer and Palazotto[15).
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